中國福建網(wǎng)

當前位置:中國福建網(wǎng) > 教育 > 正文

高中數(shù)學??碱}型答題技巧與方法

作者: 編輯 來源:互聯(lián)網(wǎng) 發(fā)布時間:2018-11-28

┊文章閱讀:

1、解決絕對值問題

主要包括化簡、求值、方程、不等式、函數(shù)等題,基本思路是:把含絕對值的問題轉(zhuǎn)化為不含絕對值的問題。

具體轉(zhuǎn)化方法有:

①分類討論法:根據(jù)絕對值符號中的數(shù)或式子的正、零、負分情況去掉絕對值。

②零點分段討論法:適用于含一個字母的多個絕對值的情況。

③兩邊平方法:適用于兩邊非負的方程或不等式。

④幾何意義法:適用于有明顯幾何意義的情況。

2、因式分解

根據(jù)項數(shù)選擇方法和按照一般步驟是順利進行因式分解的重要技巧。因式分解的一般步驟是:

提取公因式

選擇用公式

十字相乘法

分組分解法

拆項添項法

3、配方法

利用完全平方公式把一個式子或部分化為完全平方式就是配方法,它是數(shù)學中的重要方法和技巧。配方法的主要根據(jù)有:

4、換元法

解某些復雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:

設元→換元→解元→還元

5、待定系數(shù)法

待定系數(shù)法是在已知對象形式的條件下求對象的一種方法。適用于求點的坐標、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:①設②列③解④寫

6、復雜代數(shù)等式

復雜代數(shù)等式型條件的使用技巧:左邊化零,右邊變形。

①因式分解型:

(-----)(----)=0兩種情況為或型

②配成平方型:

(----)2+(----)2=0兩種情況為且型

7、數(shù)學中兩個最偉大的解題思路

(1)求值的思路列欲求值字母的方程或方程組

(2)求取值范圍的思路列欲求范圍字母的不等式或不等式組

8、化簡二次根式

基本思路是:把√m化成完全平方式。即:

9、觀察法

10、代數(shù)式求值

方法有:

(1)直接代入法

(2)化簡代入法

(3)適當變形法(和積代入法)

注意:當求值的代數(shù)式是字母的“對稱式”時,通??梢曰癁樽帜浮昂团c積”的形式,從而用“和積代入法”求值。

11、解含參方程

方程中除過未知數(shù)以外,含有的其它字母叫參數(shù),這種方程叫含參方程。解含參方程一般要用‘分類討論法’,其原則是:

(1)按照類型求解

(2)根據(jù)需要討論

(3)分類寫出結(jié)論

12、恒相等成立的有用條件

(1)ax+b=0對于任意x都成立關于x的方程ax+b=0有無數(shù)個解a=0且b=0。

(2)ax2+bx+c=0對于任意x都成立關于x的方程ax2+bx+c=0有無數(shù)解a=0、b=0、c=0。

13、恒不等成立的條件

由一元二次不等式解集為R的有關結(jié)論容易得到下列恒不等成立的條件:

14、平移規(guī)律

圖像的平移規(guī)律是研究復雜函數(shù)的重要方法。平移規(guī)律是:

15、圖像法

討論函數(shù)性質(zhì)的重要方法是圖像法——看圖像、得性質(zhì)。

定義域圖像在X軸上對應的部分

值域圖像在Y軸上對應的部分

單調(diào)性從左向右看,連續(xù)上升的一段在X軸上對應的區(qū)間是增區(qū)間;從左向右看,連續(xù)下降的一段在X軸上對應的區(qū)間是減區(qū)間。

最值圖像最高點處有最大值,圖像最低點處有最小值

奇偶性關于Y軸對稱是偶函數(shù),關于原點對稱是奇函數(shù)

16、函數(shù)、方程、不等式間的重要關系

方程的根

函數(shù)圖像與x軸交點橫坐標

不等式解集端點

17、一元二次不等式的解法

一元二次不等式可以用因式分解轉(zhuǎn)化為二元一次不等式組去解,但比較復雜;它的簡便的實用解法是根據(jù)“三個二次”間的關系,利用二次函數(shù)的圖像去解。具體步驟如下:

二次化為正

判別且求根

畫出示意圖

解集橫軸中

18、一元二次方程根的討論

一元二次方程根的符號問題或m型問題可以利用根的判別式和根與系數(shù)的關系來解決,但根的一般問題、特別是區(qū)間根的問題要根據(jù)“三個二次”間的關系,利用二次函數(shù)的圖像來解決?!皥D像法”解決一元二次方程根的問題的一般思路是:

題意

二次函數(shù)圖像

不等式組

不等式組包括:a的符號;△的情況;對稱軸的位置;區(qū)間端點函數(shù)值的符號。

19、基本函數(shù)在區(qū)間上的值域

我們學過的一次函數(shù)、反比例函數(shù)、二次函數(shù)等有名稱的函數(shù)是基本函數(shù)?;竞瘮?shù)求值域或最值有兩種情況:

(1)定義域沒有特別限制時---記憶法或結(jié)論法;

(2)定義域有特別限制時---圖像截斷法,一般思路是:

畫出圖像

截出一斷

得出結(jié)論

20、最值型應用題的解法

應用題中,涉及“一個變量取什么值時另一個變量取得最大值或最小值”的問題是最值型應用題。解決最值型應用題的基本思路是函數(shù)思想法,其解題步驟是:

設變量

列函數(shù)

求最值

寫結(jié)論

21、穿線法

穿線法是解高次不等式和分式不等式的最好方法。其一般思路是:

首項化正

求根標根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移項和因式分解的方法化為“左邊乘積、右邊是零”的形式。②分式不等式一般不能用兩邊都乘去分母的方法來解,要通過移項、通分合并、因式分解的方法化為“商零式”,用穿線法解。

  • 牙齒美容
  • 好愛卡
  • pe管
  • 小軍師遴選
  • SSL證書
  • 裝修平臺
  • 北京檢測儀器
  • 鄭州新聞網(wǎng)
  • 不干膠
  • 植物提取物網(wǎng)
  • 香港服務器租用
  • 源碼論壇
  • 激光打標機
  • 丹泊儀器
  • 礦山生態(tài)修復
  • 青島月子會所